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which makes interpretation of the results difficult. From the
information available, proportional-learning-damping control
has demonstrated better performance than existing approaches.

Some interactions between high- and low-level controllers
were observed. Iterative learning led to a bigger improvement
in torque tracking for the Time-based high-level controller,
presumably because desired motor positions were also learned
in time. Therefore, it might be that for Angle-based desired
torque, iterative learning elements could be more effective if
they were performed based on joint angle. When PD control
was compensated by an integral term (PID), previous-error
compensation (PD+PEC),orpassivity-basedadaptation (PAS),
torque tracking was slightly improved for the Time-based con-
dition, which suggested that the model-free continuous-time
integration elements in torque controllers may be beneficial
when the desired torque is consistent in time. Error-dependent
gains (PD+EDG) did not provide benefits and may be more
suited for motion based control in rehabilitation.

While showing promise in simulation and theory, model-
based control elements generally worsened or had no effect
on control performance in our experiments. Sensitivity to
modeling accuracy seems to be a fundamental issue. The
partially model-based PAS controller showed a slight benefit
in some conditions due to its adaptive nature, but the effect was
not consistent.

Comparisons across high-level controllers were difficult to
make for the same low-level control due to un-normalized
tracking difficulty. Multiple values for high-level parameters
were not tested in this study, which is an area for future work.

Changes in theprofilesofdesired torqueand joint kinematics
across low-level controllers for the same high-level condition
reveal an interaction effect. For example, more variability in
desired torquewasobservewithNMM-basedthanAngle-based
assistance when using PD, but an opposite trend was seen with
LRN.Thisseemstobeduetothecomplex,multi-time-scale,dy-
namic interactions between continuous torque control, within-
step human variations, the high-level controller, and human
adaptation over multiple steps. These effects may be important
for selecting and tuning exoskeleton torque controllers.

Hardware, series elasticity in particular, also interacted with
torque control performance. The interactions between series
elasticity, torque control gains and high-level control objectives
should be investigated in the future.

V. CONCLUSIONS

A systematic comparison of exoskeleton torque controllers
under walking conditions was conducted, demonstrating that
proportional control with damping injection compensated by
iterative learning had better torque tracking performance than
any other methods tested or previously demonstrated. Im-
plementation of this proportional-learning-damping controller
was straightforward, requiring sequential tuning of only four
parameters. Our results suggest that this approach can be
applied to multiple torque-controlled lower-limb exoskeletons
used in cyclic processes like locomotion. There remains a
rich area for future research on complex interactions between

exoskeleton hardware, torque control, assistance control, task
goals and human behavior.
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