EFFORT-O-METER: THE RELATIONSHIP BETWEEN EFFORT OF WALKING AND AMOUNT OF WALKING PERFORMED

1 Mailing Wu, 2 Peter Adamczyk, and 1 Steve Collins

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 Intelligent Prosthesis Systems, LLC, Ann Arbor, MI, USA
email: mailingwu@cmu.edu

INTRODUCTION

Walking is an effective method for promoting activity among sedentary groups, and people adhere to walking routines more than other, more vigorous exercise regimens [1, 2]. Slightly increasing the metabolic cost of walking could be a simple method of increasing overall physical activity in the overweight or obese. However, while increasing the energy cost per step would increase net metabolic cost if all conditions (distances, velocities, etc.) were kept constant, this benefit could be reduced or eliminated if the subject reduces overall activity due to the higher cost.

We explored whether a modest increase in energy cost per step affected overall energy consumption from walking over a one week period compared to normal walking energy expenditure. We hypothesized that even a small increase in energy cost per step would cause the amount of walking performed to be reduced so dramatically that the overall energy cost would be decreased. The results of this study not only have implications for prescribing exercise regimens to improve public health and promote weight loss, but also help understand the expected impact of energy-saving prostheses and orthoses on exercise obtained during walking.

METHODS

Two pairs of sneakers were constructed: one pair weighted and one pair unweighted. A platform was attached to the sole to house an inertial monitoring unit (Sapphire Inertial Monitor, APDM, Inc.) and weight, if applicable. A steel bar was used to generate the appropriate mass, which was calibrated to equal approximately 2.5% of the user’s body weight. The total load was expected to correspond to roughly a 25% energy increase per step in the user [3].

24 able-bodied participants with no major health concerns were recruited at Carnegie Mellon University. Five voluntarily withdrew before completion of the protocol due to discomfort while wearing the shoes, especially the weighted shoes. An additional nine had unusable data for a variety of reasons, including not wearing the shoes for more than 12 hours per day, large periods of unexplained time (> 4 hours) spent with the shoes off, and changing environmental conditions between the two weeks.

The remaining subjects (n=10, 7 male, 3 female, 23.60±2.88 years, 22.86±2.52 kg/m² body mass index) were asked to wear both shoes all day except when sleeping or bathing for one week each. Additional activities that required the use of other shoes or no shoes (running, swimming, etc.) were logged and kept consistent between the two weeks to minimize misrepresentations in total energy costs. Subjects were not informed of the exact nature of the data being collected and motivation behind the study to minimize data biases due to conscious decisions to alter walking behavior. Study protocol was approved by the Carnegie Mellon University Institutional Review Board, and written informed consent was obtained from all subjects after the nature and possible consequences of the study were explained.

At the completion of the community-based collection, the participant answered a survey regarding the shoes (Fig. 1). Subjects then walked on a treadmill wearing each pair of shoes at various speeds and grades while oxygen consumption was measured using an indirect respirometry system (Jaeger Oxycon Mobile).
RESULTS AND DISCUSSION
The shoes were worn for at least 12 hours per day (14.25±1.32 hours unweighted, 13.95±0.97 hours weighted) and no significant difference in times (p = 0.22). The weighted shoes created a 27.1±16.4% increase in metabolic rate while walking at 1.25 m/s on level ground.

Increasing metabolic cost of walking caused acute discomfort in users. Survey results (Fig. 1) revealed participants strongly disliked wearing the weighted shoes (p < 0.001), and found them much more tiring (p < 0.01).

Despite their dislike of the shoes, participants maintained the same distance walked per day (p = 0.91) and number of strides per day (p = 0.87), with no change in average velocity (p = 0.98), resulting in a significant increase in total energy cost when wearing the weighted shoes compared to the unweighted shoes (6,739±5,576 J/kg/day in unweighted, 8,058±6,152 J/kg/day in weighted, p = 0.002) (Fig. 2). Indeed, all but one subject had increased energy expenditure in the weighted shoes despite large differences in baseline energy use.

REFERENCES

ACKNOWLEDGEMENTS
This material is based upon work supported by the National Science Foundation under Grant No. IIS-1355716